If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying p(0) = 6x4 + -13x3 + 13x2 + -39x + -15 Reorder the terms for easier multiplication: 0p = 6x4 + -13x3 + 13x2 + -39x + -15 Anything times zero is zero. 0p = 6x4 + -13x3 + 13x2 + -39x + -15 Reorder the terms: 0 = -15 + -39x + 13x2 + -13x3 + 6x4 Solving 0 = -15 + -39x + 13x2 + -13x3 + 6x4 Solving for variable 'x'. Combine like terms: 0 + 15 = 15 15 + 39x + -13x2 + 13x3 + -6x4 = -15 + -39x + 13x2 + -13x3 + 6x4 + 15 + 39x + -13x2 + 13x3 + -6x4 Reorder the terms: 15 + 39x + -13x2 + 13x3 + -6x4 = -15 + 15 + -39x + 39x + 13x2 + -13x2 + -13x3 + 13x3 + 6x4 + -6x4 Combine like terms: -15 + 15 = 0 15 + 39x + -13x2 + 13x3 + -6x4 = 0 + -39x + 39x + 13x2 + -13x2 + -13x3 + 13x3 + 6x4 + -6x4 15 + 39x + -13x2 + 13x3 + -6x4 = -39x + 39x + 13x2 + -13x2 + -13x3 + 13x3 + 6x4 + -6x4 Combine like terms: -39x + 39x = 0 15 + 39x + -13x2 + 13x3 + -6x4 = 0 + 13x2 + -13x2 + -13x3 + 13x3 + 6x4 + -6x4 15 + 39x + -13x2 + 13x3 + -6x4 = 13x2 + -13x2 + -13x3 + 13x3 + 6x4 + -6x4 Combine like terms: 13x2 + -13x2 = 0 15 + 39x + -13x2 + 13x3 + -6x4 = 0 + -13x3 + 13x3 + 6x4 + -6x4 15 + 39x + -13x2 + 13x3 + -6x4 = -13x3 + 13x3 + 6x4 + -6x4 Combine like terms: -13x3 + 13x3 = 0 15 + 39x + -13x2 + 13x3 + -6x4 = 0 + 6x4 + -6x4 15 + 39x + -13x2 + 13x3 + -6x4 = 6x4 + -6x4 Combine like terms: 6x4 + -6x4 = 0 15 + 39x + -13x2 + 13x3 + -6x4 = 0 The solution to this equation could not be determined.
| n+-0.6=-2.8 | | 4(8y^2-7y+4)-2(8y^2-2y+9)= | | 2x+3-5(x+1)=4x+2 | | [5X-4]=4X-5 | | -(3y+2)=7 | | 4lnx+6lny-4lnz=o | | 2X-4X+5=X-9+14 | | x+3x=21-3x | | 2*(x+4)=5x-7 | | -5x+5y=-1 | | 4x^2-1=0factor | | 7x=25+2x | | 7-2(3x-1)+4x= | | 10-4x=-22 | | 10x-12=7x | | 5x^4-245x^2=0 | | .5(6.3-.4y)+.2y=3.15 | | 25*x^10=1000 | | -4x+0.32=2.48 | | 40+16.25x+8.50x=163.75 | | 47.2=-5.9h | | 2x+y=200 | | 5x=1.6 | | 15x+(3x-28)=4x | | 5x-10=7(x+4) | | 9(3x+6)=14-1(x+2) | | 7x-(4+3x)=x+5 | | -4.6=x/3 | | 6a-3b-3a-6b= | | 3(n-2)+6=5(m+4) | | 2(v+3)=-2(3v-2)+2v | | 6-d=-d+2 |